27/10/2015 14:09 pm
Câu I: Cho hàm số f(x) = -x4 + 2(m + 1)x2 – 2m – 1 1) Khảo sát và vẽ đồ thị hàm số với m = 0 2) Tìm các giá trị của m để đồ thị hàm số cắt trục hoành tại 4 điểm phân biệt có hoành độ tạo thành cấp số cộng. Câu II: 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = √(5-4x) trên đoạn [-1;1] 2) Tìm a ≥ 1 để nghiệm lớn của phương trình: x2 + (2a – 6)x + 1 – 13 = 0 đạt giá trị lớn nhất. Câu III: Giải các phương trình sau: 1) ½ log√2 (x – 1) – log½ (x + 5) = log4 (3x + 1)2 2) 2(cos6x + sin6x) – sinxcosx = 0 √2 – 2sinx Câu IV: 1) Trong mặt phẳng với hệ độ độ Oxy, cho tam giác ABC có tâm đường tròn ngoại tiếp tam giác ABC là I (-2; 1) và thỏa mãn điều kiện góc AIB = 900, chân đường cao kẻ từ A đến BC là D (-1; -1), đường thẳng AC đi qua điểm M (-1;4). Tìm tọa độ các đỉnh A, B biết rằng đỉnh A có hoành độ dương. 2) Cho đường thẳng (d) và đường tròn (C) có phương trình: (d): 2x – 2y – 1 = 0, (C): (x + 1)2 + (y+ 2)2 = 2 a) Xác định vị trí tương đối của (d) và (C). b) Tìm trên (C) điểm N(x1; y1) sao cho x1 + y1 đạt giá trị lớn nhất, nhỏ nhất. Câu V: Cho hình chóp S.ABC có cạnh bên SA vuông góc với đáy, mặt bên (SBC) tạo với đáy góc 600. Biết SB = SC = BC =a tính thể tích khối chóp theo a. Câu VI: Khai triển (x – 2)100 = a0 + a1x + a2x2 + … + a100x100 a) Tính T = a0 + a1 + a2 + … + a100 b) Tính S = a1 + 2a2 + … + 100a100 Tuyensinh247.com tổng hợp (d): 2x – 2y – 1 = 0, (C): (x + 1)2 + (y+ 2)2 = 2 DÀNH CHO BẠN – LỘ TRÌNH LUYỆN THI TỐT NGHIỆP THPT - ĐGNL - ĐGTD!
Xem ngay lộ trình luyện thi 3 trong 1 tại Tuyensinh247: Luyện thi TN THPT - ĐGNL - ĐGTD ngay trong 1 lộ trình.
Xem thêm thông tin khoá học & Nhận tư vấn miễn phí - TẠI ĐÂY |
||||||||
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi. |