26/03/2015 15:41 pm
Đề thi thử THPT Quốc gia môn Toán THPT chuyên Hưng Yên năm 2015 Câu 1 (2,0 điểm). Cho hàm số y = x3 + 3mx2 + 2 (1), với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = 1. b) Tìm m để đồ thị hàm số (1) có hai điểm cực trị A, B sao cho diện tích tam giác OAB bằng 2 (O là gốc tọa độ). Câu 3 (1,0 điểm). a) Gọi A, B là hai điểm biểu diễn cho các số phức là nghiệm của phương trình z2 + 2z + 3 = 0. Tính độ dài đoạn thẳng AB. b) Trong kì thi THPT Quốc gia năm 2015, mỗi thí sinh có thể dự thi tối đa 8 môn: Toán, Lý, Hóa, Sinh, Văn, Sử, Địa và Tiếng anh. Một trường Đại học dự kiến tuyển sinh dựa vào tổng điểm của 3 môn trong kì thi chung và có ít nhất 1 trong hai môn là Toán hoặc Văn. Hỏi trường Đại học đó có bao nhiêu phương án tuyển sinh? Chứng minh rằng hai đường thẳng d và AB cùng thuộc một mặt phẳng. Tìm điểm C thuộc đường thẳng d sao cho tam giác ABC cân đỉnh A. Câu 6 (1,0 điểm). Cho lăng trụ đứng ABC.A’B’C’có đáy là tam giác cân, AB = AC = a, góc BAC = 1200. Mặt phẳng (AB’C’) tạo với mặt đáy góc 600. Tính thể tích lăng trụ ABC.A'B'C' và khoảng cách từ đường thẳng đến mặt phẳng (AB’C’) theo . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có A (-1;2). Gọi M, N lần lượt là trung điểm của cạnh AD và DC; K là giao điểm của BN với CM. Viết phương trình đường tròn ngoại tiếp tam giác BMK, biết BN có phương trình 2x + y – 8 = 0 và điểm B có hoành độ lớn hơn 2. Đáp án đề thi thử THPT Quốc gia môn Toán THPT chuyên Hưng Yên năm 2015 Câu 3: Câu 4: Xem đáp án đầy đủ tại đây: http://tuyensinh247.com/de-thi-thu-thpt-quoc-gia-mon-toan-truong-thpt-chuyen-hung-yen-nam-hoc-2015-t2-ic1206.html?course_id=55 Tuyensinh247 tổng hợp DÀNH CHO BẠN – LỘ TRÌNH LUYỆN THI TỐT NGHIỆP THPT - ĐGNL - ĐGTD!
Xem ngay lộ trình luyện thi 3 trong 1 tại Tuyensinh247: Luyện thi TN THPT - ĐGNL - ĐGTD ngay trong 1 lộ trình.
Xem thêm thông tin khoá học & Nhận tư vấn miễn phí - TẠI ĐÂY |
||||||||
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi. |